

Efeito larvicida de óleo essencial de *Cymbopogon winterianus* Jowitt sobre larvas de *Aedes aegypti* L. (Diptera: Culicidae)

Toshik Iarley da Silva¹; Antônio Carlos Leite Alves²; Tainá Macêdo dos Santos³; William Santana Alves⁴; Johny de Souza Silva⁵; Francisco Roberto Azevedo⁶

Resumo: O objetivo deste trabalho foi analisar o potencial larvicida de *Cymbopogon winterianus* em larvas de *Aedes aegypti*. O bioensaio foi realizado no Laboratório de Entomologia Agrícola da Universidade Federal do Cariri (UFCA). O óleo essencial foi diluído em solução aquosa de dimetilsulfóxido 2% (DMSO) nas concentrações: 0,00625; 0,012; 0,025; 0,05%. Como tratamento controle utilizou-se água destilada e DMSO 2%. Realizou-se a leitura dos testes com 24 e 48 horas após a exposição das larvas, sendo consideradas mortas aquelas que não reagirem ao estímulo mecânico de uma pipeta de Pasteur. O delineamento experimental foi inteiramente casualizado, com cinco tratamentos e quatro repetições por tratamento. As médias foram comparadas pelo teste de Tukey a 5% de probabilidade. Os dados, quando necessário, foram transformados em (X + 1)^{0,5}. A comparação da CL₁₀, CL₅₀ e CL₉₀ dos óleos essenciais foi feita através da análise Probit. A eficiência de mortalidade das larvas foi determinada em porcentagem por meio da fórmula de Abbott. A CL₁₀ foi de 0,005, CL₅₀ foi de 0,012 e a CL₉₀ de 0,030%. O óleo essencial causou 100% de mortalidade nas concentrações acima de 0,05%. Com isso, salienta-se que o óleo essencial de *C. winterianus* causou efeito tóxico para as larvas de *A. aegypti*.

Palavras-chave: Inseticida botânico; toxicidade; capim citronela.

Larvicidal effect of essential oil of *Cymbopogon winterianus* Jowitt against *Aedes aegypti* L. (Diptera: Culicide) larvae

Abstract: The objective of this work was to analyze the larvicide potential of *Cymbopogon winterianus* in *Aedes aegypti* larvae. The bioassay was done in the Agricultural Entomology Laboratory of the Cariri Federal University (UFCA). The essential oil was diluted in aqueous solution of Dimethylsulphoxide 2% (DMSO) in concentrations: 0.00625; 0.012; 0.025; 0.05%. As control treatment, it was utilized distilled water and DMSO 2%. The reading tests was done in 24 and 48 hours after the larvae exposition, being considered dead that ones that didn't reacted to the mechanic stimulus of a Pasteur pipette. The experimental design was completely randomized, with five treatments and four repetitions per treatment. Average was compered by Tukey test 5% of probability. Data, when necessary, was transformed in $(X + 1)^{0.5}$. The oil essentials LC_{10} , LC_{50} e LC_{90} comparison was done through Probit analysis. The larvae mortality efficiency was certain in percentage by the Abbott formula. The LC_{10} was 0.005, LC_{50} was 0.012 and LC_{90} was 0.030%. The essential oil caused 100% of mortality in concentrations higher than 0.05%. Thereby, protrudes that *C. winterianus* essential oil caused toxic effects to the *A. aegypti* larvae.

¹ Graduando em Engenharia Agronômica pela Universidade Federal do Cariri. iarley.toshik@gmail.com

² Graduando em Engenharia Agronômica pela Universidade Federal do Cariri. carlos.ufca@gmail.com

³Graduanda em Engenharia Agronômica pela Universidade Federal do Cariri. tainamacedodossantos@gmail.com

⁴Biólogo. Especialista em Educação Ambiental pela Universidade Regional do Cariri. williamsantana_@hotmail.com

⁵ Graduando em Engenharia Agronômica pela Universidade Federal do Cariri. johny.ufca@gmail.com

⁶ Engenheiro Agrônomo. Doutor em Fitotecnia/Entomologia pela Universidade Federal do Ceará. Professor da Universidade Federal do Cariri.

Key words: botanic insecticide, toxicity, citronella grass.

Introdução

Os mosquitos são vetores de vários vírus que causam doenças como malária, filariose, dengue, febre amarela, etc., causando graves problemas de saúde aos seres humanos. O presente ressurgimento dessas doenças é devido ao maior número de locais de reprodução na sociedade descartável de hoje (KIRAN *et al.*, 2006). *Aedes aegypti* L. é o principal vetor de infecções virais que causam a dengue e a febre amarela, onde a incidência destes arbovírus têm aumentado significativamente nos últimos 25 anos (PROPHIROL *et al.*, 2011).

O A. aegypti é um mosquito originário da África, onde existem populações selvagens e domésticas. Originalmente descrito no Egito, o que lhe conferiu seu nome específico de Aedes aegypti, ele tem acompanhado o homem em sua permanente migração (BRAGA; VALLE, 2007).

A dengue constitui hoje a mais importante doença viral humana transmitida por mosquitos, cujo agente é um *Flavivirus* com quatro sorotipos conhecidos (Den-1, Den-2, Den-3 e Den-4), que podem causar a dengue clássica e a febre hemorrágica da dengue. Esta última pode evoluir para uma forma mais severa conhecida como síndrome do choque da dengue. A infecção por um sorotipo provê imunidade vitalícia para aquele vírus, mas a proteção cruzada para outro sorotipo é apenas passageira, o que torna possível ocorrer uma infecção sequente por outro sorotipo (BARRETO *et al.*, 2006)

O recente recálculo da incidência global de dengue em regiões desenvolvidas e em desenvolvimento do mundo, incluindo a América Latina e Caribe, indicou que aproximadamente 40% da população mundial estavam em risco de infecção com dengue (CHADEE; MARTINEZ, 2016).

Visando a redução ou substituição do uso de inseticidas químicos, pesquisadores têm buscado e obtido algumas formas alternativas de controle, as quais causam a morte das larvas em seus próprios criadouros, sendo importantes especialmente quando estes não podem ser eliminados (GUIRADO; BICUDO, 2009).

Algumas substâncias de origem botânica têm atividade inseticida conhecida, tais como, piretrinas, rotenona, nicotina, cevadina, veratridina, rianodina quassinoides, azadiractina e biopesticidas voláteis. Estes últimos são, normalmente, óleos essenciais presentes nas plantas aromáticas (CORRÊA; SALGADO, 2011).

Os óleos essenciais são misturas químicas complexas. Em geral, a bioatividade de óleos essenciais está correlacionada com as suas substâncias majoritárias. No entanto, é importante notar que estes metabólitos secundários podem facilitar as interações que aumentam ou diminuem a atividade larvicida de óleos testados em comparação com as atividades dos seus constituintes isolados (DIAS; MORAES, 2014).

Óleos essenciais de plantas, em geral, têm sido reconhecidos como importantes recursos naturais de inseticidas porque alguns são seletivos, biodegradáveis a produtos não tóxicos e têm alguns efeitos sobre organismos não alvos e o meio ambiente (SRITABUTRA; SOONWERA, 2013). São candidatos importantes, uma vez que são, em alguns casos, altamente ativos, prontamente disponíveis em países tropicais e economicamente viáveis (SILVA et al., 2008).

O gênero Cymbopogon inclui cerca de 140 espécies e é amplamente distribuída nas regiões de climas semitemperado a tropical em todo o mundo. Duas espécies principais de citronela são conhecidas e têm importância industrial na área farmacêutica, cosmética e de perfumaria: *C. nardus* e *C. winterianus* (SILVEIRA *et al.*, 2012).

A prevenção e controle da epidemia de dengue tornaram-se cada vez mais problemáticos e, tendo em vista a resistência adquirida por esse vetor aos larvicidas químicos utilizados e o crescente número de sua infestação no mundo, objetivou-se com a presente pesquisa avaliar o potencial larvicida de *Cymbopogon winterianus* em larvas de *Aedes aegypti* em condições de laboratório.

Material e Métodos

Os ovos do *A. aegypti* foram obtidos a partir de armadilhas de oviposição (ovitrampas), instaladas em residências de bairros da cidade do Crato, Ceará. Decorridos cinco dias de instalação, retiraram-se as armadilhas e os ovos foram colocados imersos em água em bandejas para a eclosão das larvas. Após a eclosão, estas permaneceram em água até atingirem o terceiro instar.

O bioensaio foi realizado no Laboratório de Entomologia Agrícola da Universidade Federal do Cariri (UFCA), na cidade do Crato em condições controladas de temperatura (25 ± 1 °C), umidade relativa (70 ± 10%) e fotofase de 12 horas em uma câmara climatizada tipo B.O.D (Demanda Bioquímica de Oxigênio).

O óleo essencial foi extraído da parte aérea de *C. winterianus* por hidrodestilação em aparelho tipo Clevenger segundo metodologia sugerida por Alencar *et al.* (1984). O óleo

essencial foi diluído em solução aquosa de dimetilsulfóxido 2% (DMSO) nas concentrações: 0,00625; 0,012; 0,025; 0,05%. Como tratamento controle utilizou-se água destilada e DMSO 2%.

As larvas foram separadas com o auxílio da pipeta de Pasteur e, em seguida, distribuíram-se 10 larvas em copos de polietileno (50 mL) contendo 25 mL das diluições. Realizou-se a leitura dos testes com 24 e 48 horas após a exposição das larvas, sendo consideradas mortas aquelas que não reagirem ao estímulo mecânico de uma pipeta de Pasteur.

O delineamento experimental adotado foi o inteiramente casualizado, com cinco tratamentos e quatro repetições por tratamento, de modo que para cada tratamento utilizaramse 40 larvas (10 larvas/repetição). Os dados obtidos foram analisados por meio do programa SISVAR (FERREIRA, 2011) e as médias comparadas pelo teste de Tukey a 5% de probabilidade. Os dados, quando necessário, foram transformados em (X + 1)^{0,5}. A comparação da CL₁₀, CL₅₀ e CL₉₀ dos óleos essenciais foi feita através da análise de Probit utilizando-se o programa StatPlus v5 (AnalystSoft Inc.), com intervalo de confiança ao nível de 0,01% de significância. A eficiência de mortalidade das larvas foi determinada em porcentagem por meio da fórmula de Abbott (1925):

$$MC (\%) = \frac{Nc - Nt}{Nc} \times 100$$

Onde:

Mc = Mortalidade corrigida

Nc = Número de indivíduos vivos no tratamento controle

Nt = Número de indivíduos vivos tratados

Resultados e Discussão

O óleo essencial de C. winterianus causou efeito tóxico para as larvas de A. aegypti. De acordo com a análise de Probit, definiu-se a CL_{50} na concentração de 0,012% o que torna o produto um potencial larvicida. A concentração mínima capaz de produzir mortalidade (CL_{10}) é de 0,005% e a toxicidade máxima (CL_{90}) é de 0,030% (Tabela 1).

Tabela 1 – Concentrações letais (CL) de óleo essencial de *C. winterianus* em larvas de *A. aegypti*.

Espécie	CL_{10}	CL_{50}	CL ₉₀
C. winterianus	0,005	0,012	0,030
Intervalos de confiança (0,01%)	0,001-0,019	0,006-0,025	0,010-0,091

A espécie *C. winterianus* é conhecida por sua propriedade repelente contra mosquitos e apresentou CL₅₀ de 54,7 mg/mL e CL₉₀ de 88,3 mg/mL das larvas (FURTADO *et al.*, 2005). Amer e Mehlhorn (2006), estudando o efeito de óleos essenciais como potencial larvicidas, relatam que o óleo essencial de C. winterianus causou 60% de mortalidade nas larvas após 24 horas de exposição a uma concentração de 50 ppm.

Em estudos desenvolvidos por El-Akhal *et al.* (2015), os autores ressaltam que o óleo essencial de *Citrus aurantium* L. foi o que apresentou a maior eficiência, com os respectivos valores de CL₅₀ de 22,64 mg/L e CL₉₀ de 83,77 mg/L, enquanto que o óleo essencial de *Citrus sinensis* Macfad foi o menos eficaz, com CL₅₀ de 77,55 mg/mL e CL₉₀ de 351,36 mg/mL, em larvas de *Anopheles labranchiae*.

Na Tabela 2, observa-se o número de larvas mortas submetidas às concentrações de óleo essencial extraído de *C. winterianus*, no período de 24 e 48 horas de exposição das mesmas.

Tabela 2 – Número médio de larvas mortas ± EP e eficiência de mortalidade de *A. aegypti* submetidos a diferentes concentrações de óleo essencial de *C. winterianus* em diferentes períodos de tempo.

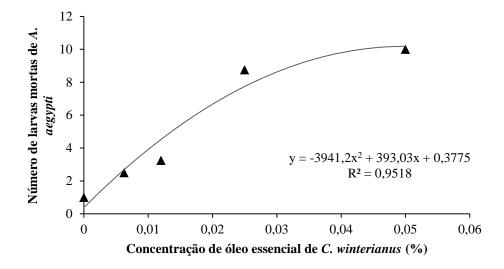
Tratamentos	Mortalidade/	Eficiência (%)		
	24 horas	48 horas*	Mortalidade total	Eficiência total
0	$0,75 \pm 0,48 \text{ b}$	$0,25 \pm 0,48 \text{ b}$	1 c	-
0,00625	$0,75 \pm 0,25 \text{ b}$	$1,75 \pm 0,25 \text{ b}$	2,5 bc	16,7
0,012	$0.75 \pm 0.25 \text{ b}$	2.5 ± 0.25 a	3,25 b	25
0,025	8.5 ± 0.96 a	$0,25 \pm 0,25$ b	8,75 a	86,11
0,05	10 ± 0 a	$0 \pm 0 b$	10 a	100
C.V. (%)	24,3	14,51	17,9	-

^{*}Médias seguidas das mesmas letras na linha não diferem entre si ao nível de 5% pelo teste de Tukey. ** Dados transformados em $(X + 1)^{0.5}$.

Quando se compara o número de larvas mortas na solução controle no período de 24 horas de exposição ao óleo essencial em relação às concentrações de 0,00625 e 0,012%, percebe-se que as mesmas não diferem estatisticamente. Porém, quando se compara as soluções supracitadas para o mesmo período de exposição em relação à concentração de 0,025 e 0,05 %, nota-se que há um aumento significativo no número de larvas mortas, no mesmo instante em que essas diferem estatisticamente das demais. Porto *et al.* (2008), analisando o óleo de *Anacardium humile* L. sobre larvas do *A. aegypti*, em diferentes concentrações (0,1 a 0,0125%), demonstrou elevada toxicidade.

Para o tempo de exposição 48 horas das larvas ao óleo essencial, percebe-se que não há diferença significativa entre as concentrações de 0,05, 0,025% e a solução controle. Isso evidencia o fato de que em concentrações acima de 0,025% as larvas já estavam mortas em sua maior totalidade nesse tempo de exposição. No entanto, as concentrações de 0,00625 e 0,012% diferiram estatisticamente da solução controle e das superiores, visto que é necessário um período maior de exposição, nessas concentrações, para obter-se melhores resultados na mortalidade das larvas.

Na avaliação das larvas *A. aegypti* após um período de 48h de exposição ao óleo essencial de *Piper aduncum* L., observou-se que o óleo essencial permaneceu ativo, sendo registrada uma taxa de mortalidade de 80, 50, 40 e 10% para as concentrações de 250, 100, 50 e 10 ppm, respectivamente (OLIVEIRA *et al.*, 2013).


Ao realizar o cálculo da eficiência de mortalidade baseado em Abbott (1925), constatou-se que as concentrações 0,05 e 0,025% apresentaram melhores eficiências que as demais (Tabela 2), já que ambas as concentrações promoveram uma eficiência de mortalidade de 100 e 86,11%, respectivamente. Os tratamentos com menor concentração do óleo obtiveram uma menor eficiência de mortalidade 16,7 (0,00625) e 25% (0,012).

Lima *et al.* (2009), avaliando a toxicidade e o efeito residual do óleo essencial de *Tagetes minuta* L. sobre larvas de *A. aegypti* no terceiro estádio de desenvolvimento, procedentes do município de Bauru-SP, observou que, quanto maior a concentração empregada nos tratamentos, maior é a eficiência de mortalidade calculada por Abbott. Quando se utilizou a concentração de 0,300 e 0,275 mL/L, obtiveram eficiência de mortalidade de 93,6 e 73,6 %, respectivamente.

O número total de larvas mortas de *A. aegypti* em relação às concentrações de óleo essencial de *C. winterianus* é mostrada na Figura 1. Percebe-se que com o aumento da concentração do óleo essencial, o número de larvas mortas aumenta gradativamente.

Figura 1 - Número total de larvas mortas de *A. aegypti* submetidas a concentrações de óleo essencial de *C. winterianus*.

O óleo essencial de *C. winterianus* causa 100% de mortalidade em larvas de 3° estádio de *A. aegypti* nas concentrações acima de 0,05%. Isso demostra que concentrações em torno desta supracitada têm efeitos de alta toxicidade a larvas desse vetor. A alta toxicidade pode ser considerada um elemento favorável, uma vez que pode ser associada a produtos químicos que perderam a potencialidade pelo uso recorrente e agir como coadjuvante. É necessário, entretanto, testar o efeito residual das substâncias em condições de campo e determinar a possibilidade da utilização segura ao ambiente (PORTO *et al.*, 2008).

A mortalidade de *A. aegypti* aumentou proporcionalmente com o aumento das concentrações de óleo essencial de *Eucalyptus cinerea*. A sobrevivência das larvas na concentração de 0 a 1 mg/mL variou de 90 a 25%. A mortalidade das larvas foi de 100% a partir da concentração de 1 mg/mL (CAVALCA *et al.*, 2010).

No óleo essencial de citronela os compostos majoritários foram o β -citronelal (45%), geraniol (20,71%) e β - citronelol (14,49%), além de outros compostos em menores quantidades (SHERER *et al.*, 2009).

Conclusões

O óleo essencial de *C. winterianus* causa efeito tóxico para as larvas de *A. aegypti*. O óleo essencial causou 100% de mortalidade nas concentrações acima de 0,05% e apresentou CL₁₀ de 0,005, CL₅₀ de 0,012 e a CL₉₀ de 0,030%. Estes resultados exaltam tanto a importância da pesquisa de novos produtos naturais com atividade larvicida para *Aedes aegypti* quanto à investigação dos princípios ativos que causam tal ação.

Referências

- ABBOTT, W. S. A method for computing the effectiviness of insecticides. **Journal of Economic Entomology**, v.18, n.15, p.265-267, 1925.
- ALENCAR, J.W.; CRAVEIRO, A.A.; MATOS, F.J.A. Kovatsindici as a presetion routine in mass spectra searches of volaties. **Journal of Natural Products**, n.47, p.890-892, 1984.
- AMER, A.; MEHLHORN, H. Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). **Parasitology Research**, v.99, n.1, p.466-472.
- BARRETO, C. B.; CAVASIN, G. M.; SILVA, H. H. G.; SILVA, I. G. Estudo das alterações morfo-histológicas em larvas de Aedes aegypti (Diptera, culicidae) submetidas ao extrato bruto etanólico de *Sapindus saponaria Lin* (Sapindaceae). **Revista de Patologia Tropical**, v.35, n.1, p.37-57, 2006.
- BRAGA, I. A.; VALLE, D. 2007. *Aedes aegypti*: inseticidas, mecanismos de ação e resistência. *Epidemiologia* e *Serviços* de *Saúde*, v.16, n.4, p.279-293, 2007.
- CAVALCA, P.A.M.; LOLIS, M.I.G.A.; REIS, B.; BONATO, C.M. Homeopathic and larvicide effect of *Eucalyptus cinerea* essential oil against *Aedes aegypti*. **Brazilian Archives of Biology and Technology**, v.53, n 4, p.835-843, 2010.
- CHADEE, D. D.; MARTINEZ, R. Aedes aegypti (L.) in Latin American and Caribbean region: Withgrowing evidence for vector adaptation to climate change? **Acta Tropica**, v.156, p.137-143, 2016.
- CORRÊA, J. C.R.; SALGADO, H. R. N. Atividade inseticida das plantas e aplicações: revisão. **Revista Brasileira de Plantas Medicinais**, v.13, n.4, p.500-506, 2011.
- DIAS, C. N.; MORAES, D. F. C.; Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review. *Parasitology* Research, v. 113, p. 565-592, 2014.
- EL-AKHAL, F.; LALAMI, A.O.; GUEMMOUH, R. Larvicidal activity of essential oils of *Citrus sinensis* and *Citrus aurantium* (Rutaceae) cultivated in Morocco against the malaria vector *Anopheles labranchiae* (Diptera: Culicidae). **Asian Pacific Journal of Tropical Disease**, v.5, n.6, p.458-462, 2015.
- FERREIRA, D. F. Sisvar: a computer statistical analysis system. **Ciência e Agrotecnologia**, v.35, n.6, p. 1039-1042, 2011.
- FURTADO, R.F.; LIMA, M.G.A.; ANDRADE NETO, M.; BEZERRA, J.N.S.; SILVA, M.G.V. Atividade Larvicida de Óleos Essenciais Contra *Aedes aegypti* L.(Diptera: Culicidae). **Neotropical Entomology**, v.34, n.5, p.843-847, 2005.
- GUIRADO, M. M.; BICUDO, H. E. M. C. Alguns aspectos do controle populacional e da resistência a inseticidas em *Aedes aegypti* (Diptera, Culicidae). **Bepa**, v.6, n.64, p.5-14, 2009. KIRAN, S. R.; BHAVANI, K.; DEVI, P. S.; RAO, B. R. R.; REDDY, J. Composition and larvicidal activity of leaves and stem essential oils of *Chloroxylon swietenia* DC against *Aedes aegypti* and *Anopheles stephensi*. **Bioresource Technology**, v. 97, p. 2481–2484, 2006.

- LIMA, W.P.; NETO, F.C.; MACORIS, M.L.G.; ZUCCARI, D.A.P.C.; DIBO,M.R. Estabelecimento de metodologia para alimentação de *Aedes aegypti* (Diptera-Culicidae) em camundongos swiss e avaliação da toxicidade e do efeito residual do óleo essencial de *Tagetes minuta* L (Asteraceae) em populações de *Aedes aegypti*. **Revista da Sociedade Brasileira de Medicina Tropical,** v.42, n.6, p.638-641, 2009.
- OLIVEIRA, G. L.; CARDOSO, S. K.; LARA JÚNIOR, C. R.; VIEIRA, T. M.; GUIMARÃES, E. F.; FIGUEIREDO, L. S.; MARTINS, E. M.; MOREIRA, D. L.; KAPLAN, M. A. C. 2013. Chemical study and larvicidal activity against *Aedes aegypti* of essential oil of *Piper aduncum* L. (Piperaceae). **Anais da Academia Brasileira de Ciências**, v.85, n.4, p.1227-1234, 2013.
- PORTO, K.R.A.; ROEL, A.R.; SILVA, M.M.; COELHO, R.M.; SCHELEDER, E.J.D.; JELLER, A.H. Atividade larvicida do óleo de *Anacardium humile* Saint Hill sobre *Aedes aegypti* (Linnaeus, 1762) (Diptera, Culicidae). Revista da Sociedade Brasileira de Medicina Tropical, v.41, n.6, p.586-589, 2008.
- PROPHIROL, J. S.; SILVA, O. S.; LUNA, J. E. D.; PICCOLI, C. F.; KANIS, L. A.; SILVA, M. A. N. *Aedes aegypti* and *Aedes albopictus* (Diptera: Culicidae): coexistence and susceptibility to temephos, in municipalities with occurrence of dengue and differentiated characteristics of urbanization. **Revista da Sociedade Brasileira de Medicina Tropical**, v.44, n.3, p.300-305, 2011.
- SCHERER, R.; WAGNER, R.; DUARTE, M.C.T.; GODOY, H.T. Composição e atividades antioxidante e antimicrobiana dos óleos essenciais de cravo-da-índia, citronela e palmarosa. **Revista Brasileira de Plantas Medicinais**, v.11, n.4, p.442-449, 2009.
- SILVA, W. J.; DORIA, G. A. A.; MAIA, R. T.; NUNES, R. S.; CARVALHO, G. A.; BLANK, A. F.; ALVES, P. B.; MARÇAL, R. M.; CAVALCANTI, S. C. H. 2008. Effects of essential oils on *Aedes aegypti* larvae: Alternatives to environmentally safe insecticides. **Bioresource Technology**, v. 99, p. 3251–3255, 2008.
- SILVEIRA, S.M.; CUNHA JR, A.; SCHEUERMANNG.N.; SECCHI, F.L.; VERRUCK, S.; KROHN, M.; VIEIRA, C.R.W. Composição química e atividade antibacteriana dos óleos essenciais de *Cymbopogon winterianus* (citronela), *Eucalyptus paniculata* (eucalipto) e *Lavandula angustifolia* (lavanda). **Revista do Instituto Adolfo Lutz**, v.71, n.3, p.471-80, 2012.
- SRITABUTRA, D.; SOONWERA, M. 2013. Repellent activity of herbal essential oils against *Aedes aegypti* (Linn.) and *Culex quinquefasciatus* (Say.). **Asian Pacific Journal of Tropical Disease**, v.3, n.4, p.271-276, 2013.