Resposta do cultivar de soja MSOY 8766 RR submetido à aplicação de fertilizantes via tratamento de sementes e via foliar em diferentes épocas

Francisco de carvalho Ribeiro¹, José Iran Cardoso da Silva², Ercília Libório da silva³, Eduardo Andrea Lemus Erasmo⁴ e José Bonfim Pereira Alves³.

Resumo: A utilização de fertilizantes no tratamento de sementes pode melhorar as condições para o estabelecimento das plantas na sua fase inicial de desenvolvimento. A aplicação de nutrientes via foliar é feita a fim de se obter incrementos de produtividade, pois visa suprir a demanda das plantas na fase reprodutiva. O objetivo do trabalho foi avaliar as características agronômicas do cultivar de soja MSOY 8766 RR, submetido à aplicação de fertilizantes no tratamento de sementes e via foliar em diferentes estádios de desenvolvimento da cultura. O experimento foi conduzido no ano agrícola 2012/2013, na área experimental da Universidade Federal do Tocantins. O delineamento experimental utilizado foi o de blocos casualizados com quatro repetições. Os tratamentos foram Ultraseed, MS-Mn 300, Ms-florada aplicados no tratamento de sementes e via foliar nos estádios fenológicos V6 e R1, e uma testemunha sem aplicações. Foram avaliadas as variáveis: altura de planta, altura de inserção da primeira vagem, número de vagens íntegras por planta, número de vagens chochas por planta, massa de 100 grãos e produtividade. Todos os tratamentos promoveram aumentos significativos no número de vagens por planta de soja em comparação à testemunha. O tratamentos Ultraseed aplicado nas sementes + Ultraseed via foliar + Ms-florada e Ultraseed aplicado nas sementes + Ultraseed via foliar em V6, induziram os maiores aumentos no número de vagens. Os tratamentos Ultraseed na semente + Ultraseed em V6 + Ms-florada em R1 e Ultraseed aplicado nas sementes + Ultraseed via foliar em V6, incrementaram significativamente a produtividade de grão de soja.

Palavras-chave: Glycine Max, micronutrientes, Ultrassed.

Response of soybean MSOY 8766 RR fertilizer application on seed treatment and foliar application at different times

Abstract: The use of fertilizers in seed treatment can improve conditions for plant establishment in the early stages of development. The foliar nutrient application is made in order to achieve increased productivity, as it aims to meet the demand of the plants in the reproductive phase. The aim of this study was to evaluate the agronomic characteristics of soybean cultivar MSOY 8766 RR, submitted to the application of fertilizers in seed treatment and foliar application in different stages of crop development. The experiment was conducted in the agricultural year 2012/2013, in the experimental area of the Federal University of Tocantins. The experimental design was a randomized block with four replications. Treatments were Ultraseed, MS-300 Mn, Ms-bloom applied as a seed treatment and foliar growth stages V6 and R1, and a control without applications. The variables evaluated were: plant height, height of the first pod, number of pods per plant integrity, number of empty pods per plant, weight of 100 grains and productivity. All treatments promoted a significant increase in the number of intact pods per plant compared to the control. However, Ultraseed

¹ Graduando em Agronomia. Universidade Federal do Tocantins (UFT). Rua Badejos, LT. 07, CEP: 77402970, Zona Rural, Gurupi-TO. francisco_cr10@hotmail.com

² Engenheiro Agrônomo. Pós-Doutorando em Agronomia (UFT). Gurupi-TO. joseiranc@hotmail.com

³ Graduação em Engenharia Agronômica. Universidade Federal do Tocantins (UFT). Gurupi-TO. liborio_ercilia@hotmail.com, bonfim_uft@hotmail.com

⁴ Engenheiro Agrônomo. Doutor em Produção Vegetal (UNESP). Professor adjunto IV na Universidade Federal do Tocantins. Gurupi-TO. erasmolemus@uol.com.br

treatments applied to seeds + Ms + Ultraseed foliar-applied at flowering and Ultraseed seeds + foliar Ultraseed in V6, induced the greatest increases in numbers of pods. The Ultraseed treatments on seed Ultraseed in V6 + Ms-flowering Ultraseed on R1 and applied to seeds + foliar Ultraseed in V6, significantly increased the productivity of soybeans. **Key words:** *Glycine max*, micronutrients, Ultraseed.

Introdução

A soja *Glycine max* (L.) Merrill, é originária do sudoeste asiático, e apesar de haver relatos da sua existência nos primórdios das civilizações, somente em meados do século vinte obteve expressão econômica devido suas diversas aplicações industriais, sendo atualmente a principal oleaginosa produzida e consumida mundialmente (HIRAKURI & LAZZAROTTO, 2011).

O Brasil encontra-se como o segundo maior produtor da cultura. A sojicultura possui grande importância para a economia nacional, pois envolve diversos agentes e organizações em vários setores econômicos, desempenhando papel fundamental para o PIB (Produto Interno Bruto) (HIRAKURI & LAZZAROTTO, 2011).

Segundo o levantamento da Conab (2013), a soja representa mais de 40% da produção de grãos brasileira. O mesmo levantamento aponta ainda na safra de soja 2011/12 recordes de 25.042,2 milhões de hectares de área plantada, 2.651 kg/ha de produtividade média nacional e produção de 66.383,0 milhões de toneladas. No Tocantins, a produção de soja na safra 2011/12 foi de 1.382,9 milhões de toneladas.

Os avanços científicos da última década na utilização de produtos químicos a exemplo de inseticidas, herbicidas, fertilizantes, o uso de cultivares mais produtivas dentre outros, permitiram um aumento significativo na produção e produtividade da soja. Dentre esses avanços, destaque especial pode ser dado à aplicação de macro e micronutrientes via foliar e no tratamento de sementes na cultura da soja.

A aplicação de nutrientes no tratamento de sementes pode ser feita juntamente com inoculantes, fungicidas e etc. a fim de se proporcionar para a planta melhores condições de desenvolvimento nas fases iniciais. A aplicação via foliar pode ser feita nas plantas que por ventura estiverem com baixo estoque nutricional ou apenas como suplementação a fim de se obter incremento da produtividade.

Marcondes & Caires (2005), não observaram interação significativa entre aplicações de diferentes doses de Mo ou Co na nodulação e eficiência do processo biológico de fixação de N2.

Resultados favoráveis a aplicações de fertilizantes foliares foram encontrados por Souza *et al.* (2008), que constataram efeitos positivos de Cálcio (Ca) e Boro (B) na cultura da soja, obtendo produtividade de 6506 kg ha-1com a cultivar BRS-MG RR.

Na literatura existem muitas pesquisas que abordam a aplicação de elementos nutritivos para as plantas via foliar e no tratamento de sementes. No entanto, muitos pesquisadores não obtiveram sucesso em seus trabalhos, contrastando com outros que obtiveram resultados significativos. Diante disso, é possível afirmar que os diferentes resultados dependem do modo de aplicação, da época em que ela ocorre e da composição nutritiva do fertilizante utilizado, além de diversas outras interferências a que as plantas são susceptíveis.

Logo, faz-se necessário pesquisas neste sentido, a fim de se descobrir os fatores que condicionam o sucesso ou insucesso no aumento da produtividade de grãos na soja. O que é de extrema importância para o produtor, para a economia e para o meio ambiente, pois produzir mais na mesma área plantada faz com que diminua a necessidade de abrir novas áreas para plantio.

Conforme Sfredo & Oliveira (2010), a prática da suplementação é economicamente viável podendo ser utilizada pelos produtores.

Neste sentido, o objetivo deste trabalho foi avaliar características agronômicas do cultivar de soja MSOY 8766 RR, submetido à aplicação de fertilizantes no tratamento de sementes e via foliar em diferentes estádios de desenvolvimento da cultura.

Material e Métodos

O experimento foi conduzido no ano agrícola 2012/2013 em condições de campo na estação experimental da Universidade Federal do Tocantins (UFT), Campus de Gurupi – TO, localizado em latitude Sul de 11° 43° 45″ latitude S, e longitude Oeste 49° 04′ 07″ de Greenwich, em altitude de 287 m. O clima regional é do tipo B1WA'a' úmido com moderada deficiência hídrica (KÖPPEN, 1948), a temperatura média anual é de 29,5° C e a precipitação média anual de 1.804 mm.

O solo da área experimental é classificado como LATOSSOLO VERMELHO AMARELO Distrófico típico (EMBRAPA, 2006), e apresentou as seguintes características químicas:

Tabela 1 - Análise química do solo na profundidade 0-20 cm, amostrado antes da instalação do experimento

рН	Ca	Mg	Al	H + Al	CTC	Р	K	M.O	V
CaCl ₂	cmol _c dm ⁻³			mg	dm ⁻³	9	/ ₆		
5,05	1,51	0,87	0,1	3,71	6,3	1,9	70,4	1,5	40,8

O preparo de solo consistiu de uma aração e duas gradagens. A adubação de base foi realizada juntamente com a semeadura e constou da aplicação de 550 kg ha-1 da fórmula 5-25-15. A semeadura foi realizada em 17 de dezembro de 2012, na profundidade de 05 centímetros, utilizando-se densidade inicial de 14 sementes por metro linear e espaçamento de 0,50 metros entre linhas. A cultivar utilizada foi a MSOY 8766 RR. O fornecimento de água suplementar foi realizado por meio de irrigação por aspersão convencional.

Os tratos culturais para controle de plantas daninhas consistiram de, capinas manuais no decorrer do desenvolvimento da cultura. O controle de vaquinhas, moscas branca, falsas medideira e percevejos, foram realizados com a utilização dos inseticidas: Deltametrina, Tiametoxam, Clorpirifós e Triflumurom. As doenças fúngicas foram controladas utilizando os fungicidas Picoxystrobina + Ciproconazol.

As parcelas experimentais foram constituídas de 4 linhas de 5,0 m de comprimento espaçadas de 0,50 m. Para área útil considerou-se as 2 linhas centrais de cada parcela, desprezando 0,5 metro nas extremidades de cada linha.

O delineamento experimental utilizado foi o de blocos casualizados com 4 repetições. Os tratamentos foram Ultraseed (Co, Mo, N e P2O5), MS-Mn 300 (Mn e S) e Ms-florada (Ca e B) aplicados no tratamento de sementes e via foliar nos estádios fenológicos V6 e R1 da cultura e uma testemunha sem aplicação (Tabela 2).

Para o tratamento de sementes, utilizou-se a dose de 200 mL ha⁻¹ de Ultraseed. Considerando-se que foi utilizado para a semeadura 55 kg ha⁻¹ de sementes, aplicou-se o equivalente a 3,6 mL de Ultraseed Kg⁻¹ de sementes.

As aplicações foliares foram feitas utilizando-se um pulverizador costal pressurizado a CO₂, com pressão constante de 250 kPa, munido de quatro pontas XR 11002, espaçadas de 0,5 m, e volume de calda de 200 L ha⁻¹.

Tabela 2 - Tratamentos aplicados na cultura da soja, cultivar MSOY 8766RR, com respectivas doses e quantidade aportada dos principais nutrientes presentes em cada produto. Gurupi, TO. 2013

	cada produco. Garapi, 10. 2013				
Trat		Dose ha ⁻¹	Quantidade aplicada (g ha ⁻¹ ou %)		
T1	Testemunha	Sem aplicação	0		
T2	Ultraseed na semente	200 mL ⁻¹	Co (1,44); Mo (6); N (14,4); P ₂ O ₅ (33,6)		
Т3	Ultraseed na semente + Ultraseed em R1	200* mL ⁻¹	Co (1,44); Mo (6); N (14,4); P ₂ O ₅ (33,6)		
T4	Ultraseed na semente + Ultraseed em V6 + MS-Mn 300 em V6	200*mL + 0,5kg	Co (1,44); Mo (6); N (14,4); P ₂ O ₅ (33,6) + S (17,2%); Mn (30%)		
T5	Ultraseed na semente + Ultraseed em V6	200*mL	Co (1,44); Mo (6); N (14,4); P ₂ O ₅ (33,6)		
Т6	Ultraseed na semente + Ultraseed em V6 + Ms-florada em R1	200*mL + 0,5kg	Co (1,44); Mo (6); N (14,4); P ₂ O ₅ (33,6) + Ca (13%); B (8%)		

^{* = 200} mL ha⁻¹ no tratamento de sementes + 200 mL ha⁻¹ na aplicação foliar.

Determinou-se as seguintes características agronômicas: altura de plantas, altura de inserção da primeira vagem, número de vagens íntegras por planta, número de vagens chochas por planta, peso de 100 grãos e produtividade da cultura da soja.

Aos 109 dias após a semeadura, realizou-se a medição da altura das plantas de soja com a utilização de uma trena de 3 metros. Como critério avaliativo mediu-se a altura de 10 plantas do nível do solo até o ápice da haste principal.

Para o parâmetro altura de inserção da primeira vagem, utilizou-se uma régua milimétrica de 30 cm, medindo da base do caule até a altura da primeira vagem.

Os valores das variáveis, número de vagens por planta e vagens chochas por planta, foram expressos a partir da colheita de dez plantas da área útil de cada uma das parcelas. As vagens destas plantas foram submetidas a contagem manual em laboratório, separando-se sempre as vagens viáveis das chochas.

As médias dos dados foram submetidas à análise de variância e, quando houve diferença significativa pelo teste F, realizou-se a comparação das médias pelo teste de Turkey (p < 0.05) para todas as variáveis estudadas, utilizando-se do programa software SISVAR (Ferreira, 2000).

Resultados e Discussão

Verificou-se que para a variável altura de planta não houve diferença significativa entre os tratamentos. Porém, observou-se que todos os tratamentos contendo nutrientes apresentaram valores de altura de plantas de soja superiores àquele encontrado na testemunha (Tabela 3). Contudo, o tratamento T5 (Ultraseed aplicado nas sementes + Ultraseed via foliar

em V6) apresentou altura de planta 15,70% superior à testemunha. O tratamento T6 (Ultraseed aplicado nas sementes + Ultraseed via foliar + Ms-florada) apresentou valor de altura de planta inferior ao T5, no entanto 12,38% maior que a testemunha.

Mann *et al.* (2001) encontraram na cultivar de soja Garimpo, altura de plantas significativamente superiores à testemunha quando avaliaram diferentes doses de manganês aplicadas via solo ou via foliar nos estádios V4 e V8. Ao encontrar valores nos tratamentos que receberam adubação em V10 semelhantes ao da testemunha, estes mesmos autores concluíram que não há respostas para a variável altura das plantas, quando estas atingem certo desenvolvimento.

Meschede *et al.* (2004) aplicando Comol e Bas-citrus + Fetrilon, que são fontes de Co e Mo, nos estádios fenológicos V4 e R4 observaram efeito sobre o crescimento das plantas de soja no tratamento com aplicação de Bas-citrus + Fetrilon no estádio V4.

Trabalho realizando por Rezende *et al.* (2005) com P em adubação foliar nas diferentes fases do desenvolvimento da cultura da soja, não apresentou aumento significativo na altura de plantas. Resultados assim são possivelmente causados pela translocação de mais de 50% do fósforo da parte aérea das plantas de soja para os legumes (MALAVOLTA, 1980) na fase reprodutiva.

Coelho *et al.* (2011) também não encontraram acréscimo na altura de plantas avaliando a eficiência agronômica da cultura soja submetida a aplicação foliar de B, Mg e Zn.

Para altura de inserção da primeira vagem (Tabela 3), os tratamentos T2 (Ultraseed na semente), T3 (Ultraseed na semente + Ultraseed em R1), T4 (Ultraseed na semente + Ultraseed em V6 + MS-Mn 300 em V6), e T6 (Ultraseed na semente + Ultraseed em V6 + Ms-florada em R1) apresentaram valores maiores do que o da testemunha (T1). Já o tratamento T5 (Ultraseed aplicado nas sementes + Ultraseed via foliar em V6) exibiu vagens 1,33% mais baixas do que a testemunha. No entanto, essas diferenças não foram significativas pelo teste T a 5%. Esses resultados corroboram com os obtidos por Rezende *et al.* (2005) que também não encontraram aumento na altura de inserção da primeira vagem aplicando P via foliar em diferentes fases de desenvolvimento da soja (V5, V5 + R1, V5 + R4, V5 + R1 + R4, V5 + R1 + R4, V5 + R1 + R4).

Golo *et al.* (2009) também verificaram que a aplicação foliar (estádio V4) de diferentes doses de Co e Mo (fonte Quimifol CoMo Plus), não influenciou a variável em questão. Resultados semelhantes foram observados por Andrade *et al.* (2001) que trabalhou com N e Mo na cultura do feijão.

Kappes *et al.* (2008) observaram que a altura de inserção da primeira vagem de soja não apresentou altura significativa pela influencia da aplicação foliar de B nas fases V5, V9 e R3. Segundo os autores, isso mostra que essa variável não é afetada pelo fornecimento de B.

Tabela 3 - Altura de plantas e de inserção da 1ª vagem da cultivar de soja MSOY 8766RR em resposta da aplicação de fertilizantes no tratamento de sementes e via foliar. Gurupi - TO, 2013

Tratamentos	Altura da plantas (am)	Ingonoão do 1ª vogom
1 ratamentos	Altura de plantas (cm)	Inserção da 1ª vagem
T1	89,65	13,73
T2	96,25	16,28
T3	97,28	16,35
T4	95,85	16,73
T5	103,73	13,55
T6	100,75	16,03
F	1,54ns	2,76ns
MÉDIA	97,25	15,44
CV	7,94	11,05

ns= não significativo a 5% de probabilidade pelo teste de Tukey.

O número de vagens íntegras por planta foi incrementado significativamente em todos os tratamentos contendo fertilizantes em relação à testemunha. O tratamento T2 demonstrou que a aplicação de Ultraseed na semente foi capaz de incrementar em 158,13% o número de vagens por planta em comparação a testemunha. Já o T3 (Ultraseed na semente + Ultraseed em R1) apresentou 157,55% de aumento em relação à testemunha. No entanto, provavelmente esse aumento ocorreu pela ação do Ultraseed no tratamento de sementes e não pela aplicação via foliar em R1 (Tabela 4).

Os tratamentos T5 (Ultraseed na semente + Ultraseed em V6) e T6 (Ultraseed na semente + Ultraseed em V6 + Ms-florada em R1) demonstraram acréscimo no número de vagens por planta de 237,32% e 254,67% respectivamente, em comparação com a testemunha. Por outro lado, para os tratamentos T5 e T6 houve aumento no número de vagens por planta de 30,68% e 37,40% respectivamente, em comparação com o T2. Pode-se inferir que o incremento no número de vagens por planta de 30,68% que ocorreu no T5 se deu pela aplicação de Ultraseed via foliar em V6.

Constatou-se que o T6 proporcionou 5,15% de aumento no número de vagens sobre o tratamento T5. A diferença ocorrida entre os tratamentos possivelmente se deu pela aplicação Ca e B (Ms-florada) em R1, sendo que estes elementos estão diretamente ligados à fertilização e pegamento das flores.

O T4 (Ultraseed no tratamento de sementes + Ultraseed foliar em V6) se diferiu do T5 apenas pela aplicação de Mn e S (MS-Mn) em V6. Mas, o T4 produziu 18,07% menos vagens por planta que o T5. Não se sabe exatamente quais fatores foram determinantes para tal redução, mas pode ter ocorrido desbalanço nutricional, efeito fitotóxico do Mn nas plantas, ou ainda efeito antagônico das associações dos fertilizantes aplicados em V6.

Souza *et al.* (2008) ao aplicarem Ca e B via foliar na soja nos estádios fenológicos R1 e R3 observaram 43% de aumento no número de vagens por planta na cultivar BRS MG 705S RR em comparação com a cultivar BRS Favorita.

A aplicação de Ca e B também aumentou o número de vagens por planta de soja nos estudos realizados por Bevilaqua *et al.* (2002) por meio da pulverização de uma solução com cloreto de cálcio (0,5% de Ca) e borato de sódio (0,25% de B) em quatro épocas do desenvolvimento: 10 dias antes da floração, floração plena, 15 dias após a floração e 30 dias após a floração.

Pitter *et al.* (2012) obtiveram aumento significativo no número de vagens por planta de soja aplicando uréia (fonte de N) via foliar no estádio R1.

Golo *et al.* (2009) não constataram influência no número de vagens por planta de soja quando aplicaram diferentes doses de Mo e Co via foliar no estádio fenológico V4.

Mann *et al.* (2001) pesquisando os efeitos da aplicação de diferentes doses de manganês via solo e foliar em diferentes fases da soja (V4, V8 e V10), observaram valores de vagens por planta superiores a testemunha em todos os tratamentos, sugerindo um menor abortamento de flores e de vagens. Estes resultados se assemelham aos obtidos por Randall *et al.* (1975) pesquisando tratamentos também semelhantes.

Não se observou diferença estatística para variável número de vagens chochas. Contudo, ao analisar os tratamentos na ordem em que eles estão dispostos na tabela 4, é possível observar aumentos em todos os tratamentos com aplicação de fertilizantes em comparação a testemunha. Porém, esse aumento se deu pela maior emissão de vagens totais por planta em consequência do uso dos fertilizantes.

Ao comparar o número de vagens total (íntegras + chochas) com o de vagens chochas dentro de cada tratamento, constatou-se que o tratamento testemunha, apresentou valor percentual de vagens chochas superiores aos encontrados nos demais tratamentos. Isso implica dizer que, a aplicação dos fertilizantes contribuiu para redução percentual de vagens chochas.

Coelho *et al.* (2011) avaliaram a eficiência agronômica da soja que foi submetida a aplicação foliar de Mg, Zn e B, e não observaram resultados significativos para número de

vagens chochas por planta, apesar de também terem obtido maiores valores em alguns tratamentos do que os da testemunha.

Alguns dos tratamentos da pesquisa realizada por Fabris *et al.* (2013) que estudaram a aplicação foliar de um fertilizante mineral misto (composto de Mo, Fe, Mg, B, Cu, Zn, Mn, S, Pentóxido de difósforo e óxido de potássio) aplicado na soja nos estádios V8, R2 e R5 apresentaram número de vagens chochas em alguns tratamentos maiores que outros, no entanto, não foram significativos entre si.

Pode-se citar ainda, o estudo de Souza *et al.* (2008) que aplicaram Ca e B no estádio R3 da soja e verificaram mais vagens chochas por planta na cultivar Conquista (não transgênica) do que nas demais cultivares (transgênicas). Estes mesmos autores justificam, no entanto, que esse resultado ocorreu devido a cultivar e não pela ineficiência do tratamento a que foram submetidas.

Tabela 4 - Número de vagens íntegras e de vagens chochas por planta da cultivar de soja MSOY 8766RR em resposta da aplicação de fertilizantes no tratamento de sementes e via foliar. Gurupi - TO, 2013

Tratamentos	Vagens íntegras planta ⁻¹	Vagens chochas planta ⁻¹
T1	43,35 a	16,53
T2	111,90 b	25,45
T3	111,65 b	25,75
T4	123,85 b	19,85
T5	146,23 b	20,15
Т6	153,75 b	28,77
F	9,07*	0.65^{ns}
MÉDIA	115,12	22,75
\mathbf{CV}	22,66	50,49

Médias seguidas de mesma letra na coluna, não diferem estatisticamente entre si pelo teste de Tukey a 5% de probabilidade.

Os valores médios da massa de 100 grãos (tabela 5) obtidos no trabalho não apresentaram diferenças significativas entre os tratamentos. Porém o tratamento T6 (Ultraseed na semente + Ultraseed em V6 + Ms-florada em R1) obteve um aumento na massa de 100 grãos de 4,92% quando comparado com a testemunha. Resultado semelhante foi obtido por Oliveira (2007) que avaliando o produto Acaplus (8,5% Zn + 7% N) aplicado via semente em diferentes cultivares de soja, não verificou diferença estatística entre os tratamentos para peso médio de 100 sementes. O peso médio de 100 grãos é uma característica geneticamente determinada, porém, é influenciada pelo ambiente (NAVARRO JÚNIOR e COSTA, 2002).

Em relação à produtividade de grãos, os tratamentos T5 e T6 apresentaram valores diferentes estatisticamente da testemunha. O tratamento T6 (Ultraseed na semente + Ultraseed

^{*=} significativo a 5% de probabilidade pelo teste de Tukey.

em V6 + Ms-florada em R1) resultou na maior produtividade de grãos (4809,63 kg ha⁻¹), sendo que a Testemunha obteve produtividade de 2821,60 Kg ha⁻¹, o que corresponde diferença de 70,46 %. O segundo melhor resultado de produtividade (4190,91Kg ha⁻¹) foi verificado no T5 (Ultraseed aplicado nas sementes + Ultraseed via foliar em V6), se diferenciando do tratamento testemunha em 48,53%. De acordo com Souza *et al.* (2008), ao trabalharem com o cultivar de soja transgênica BRS MG 705S RR e testarem a aplicação em R1 e R3 de diferentes doses de fertilizante foliar a base de Ca (8%) e B (2%), encontraram resultados satisfatórios para a produtividade de grãos, chegando a um rendimento de 6506 kg ha⁻¹ quando utilizaram a dose de 1,0 L ha⁻¹.

Porém estudos com bioestimulantes nem sempre têm mostrado efeitos positivos sobre o desenvolvimento das plantas. Vasconcelos (2006) constatou que o uso de bioestimulante não aumentou a produção de matéria seca, estatura, eficiência fotoquímica, teor de proteína e nutrientes nas plantas de milho e de soja, e, portanto, não obteve produtividades satisfatórias.

Vários autores verificaram que o número de vagens por planta é o caráter que mais contribui para o rendimento de grãos em leguminosas, uma vez que apresenta as maiores correlações com a produção (CARPENTIERI-PÍPOLO et al., 2005). Para Rocha et al. (2011) a produção total de grãos em uma planta, depende de um conjunto de características, com destaque para o tamanho e o peso de sementes, os quais, por sua vez, dependem do maior vigor da planta e de um período de frutificação mais longo.

Tabela 05 - Valores médios da massa de 100 grãos (M100G) e produtividade (Kg ha⁻¹) da cultivar de soja MSOY 8766RR em resposta da aplicação de fertilizantes no tratamento de sementes e via foliar. Gurupi - TO, 2013

Tratamentos	M100G (g)	Pr. (Kg ha ⁻¹)
T1	10,77	2821,60 a
T2	10,84	3011,74 a
Т3	10,95	3634,83 ab
T4	10,89	3863,38 abc
T5	11,21	4190,91bc
T6	11,30	4809,63 c
F	$0,25^{\text{n.s.}}$	8,43*
MÉDIA	10,99	3722.01
\mathbf{CV}	7,77	13,72

Médias seguidas por letras minúsculas distintas na coluna diferem entre si estatisticamente pelo teste de tukey a 5 % de probabilidade.

n.s = Não significativo;

^{* =} Significativo a 5 % de probabilidade pelo de turkey.

Conclusões

Todos os tratamentos promoveram aumentos significativos no número de vagens íntegras por planta de soja em comparação a testemunha. Todavia, os tratamentos Ultraseed aplicado nas sementes + Ultraseed via foliar + Ms-florada e Ultraseed aplicado nas sementes + Ultraseed via foliar em V6, induziram os maiores aumentos no números de vagens.

Os tratamentos Ultraseed na semente + Ultraseed em V6 + Ms-florada em R1 e Ultraseed aplicado nas sementes + Ultraseed via foliar em V6, incrementaram significativamente a produtividade de grão de soja.

Referências

ANDRADE, M. J. B. *et al.*; Resposta do feijoeiro às adubações nitrogenada e molíbdica e à inoculação com *Rhizobium tropici*. **Cienc. Agrotec**., Lavras, v.25, n.4, p.934-940, 2001.

BEVILAQUA, G.A.P.; FILHO, P.M.S.; POSSENTI, J.C.; Aplicação foliar de cálcio e boro e componentes de rendimento e qualidade de sementes de soja. **Ciência Rural**, v.32, n.1, pg.31-34, 2002.

CARPENTIERI-PÍPOLO, V.; GASTALDI, L. F.; PIPOLO, A. E. Correlações fenotípicas entre caracteres quantitativos em soja. **Semina: Ciências Agrárias**, Londrina, v. 26, n. 1, p. 11-16, jan./mar. 2005.

COELHO, H.A.; GRASSI FILHO, H.; BARBOSA, R.D.; ROMEIRO, J.C.T.; POMPERMAYER, G.V.; LOBO,T.F.; Eficiência agronômica da aplicação foliar de nutrientes na cultura da soja. **In: Revista Agrarian**. Dourados, v.4, n.11, p.73-78, 2011.

CONAB (Companhia Nacional De Abastecimento), *Décimo primeiro levantamento*, *da safra 2012/2013*. Brasília: Ministério da Agricultura, Pecuária e Abastecimento, 22p. (versão online). Disponível em: http://www.conab.gov.br. Acesso em: 28 de agosto de 2013.

EMPRESA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Centro Nacional de Pesquisa de Solos. **Sistema brasileiro de classificação de solos**. 2. ed. Rio de Janeiro, 2006. 306p.

FABRIS, D.N; SELAJA, O.L; FINAMORE, W.L.M; Avaliação biométrica da soja com diferentes doses de fertilizante mineral misto em aplicação foliar. **Revista de Ciências Exatas e da Terra** UNIGRAN, v2, n.1, 2013.

Ferreira DF (2000) Manual do sistema Sisvar para análises estatísticas. Lavras, UFLA. 66p.

GOLO, A.L.; KAPPES, C.; CARVALHO, M.A.C. de; YAMASHITA, O. M.; Qualidade das sementes de soja com a aplicação de diferentes doses de molibdênio e cobalto. **Rev. bras. sementes** [online]. 2009, vol.31, n.1, pp. 40-49. ISSN 0101-3122.

HIRAKURI, M.H.; LAZZAROTTO, J.J.; Evolução e perspectivas de desempenho econômico associados com a produção de soja nos contextos mundial e brasileiro. EMBARAPA SOJA, Doc. 319, Londrina-PR, 2011.

KAPPES, C.; GOLO, A.L; CARVALHO, M.A.C; Doses épocas de aplicação foliar de boro nas características agronômicas e na qualidade de sementes de soja. **Scientia Agraria**, Curitiba, v.9, n.3, p.291-297, 2008.

KÖPPEN, W.; Climatologia: con un estudio de los climas de la tierra. Fondo de Cultura Econômica. México. p. 479, 1948.

MALAVOLTA, E.; **Elementos de nutrição mineral de plantas**. Piracicaba: Ceres, 1980. 251p.

MANN, E.N.; REZENDE, P.M. de; CARVALHO, J.G. de; CORRÊA, J.B.D.; Efeito da adubação com manganês, via solo e foliar em diferentes épocas na cultura da soja (Glycinemax (L.) Merrill). **Ciência e Agrotecnologia**, v.25, p.264-273, 2001.

MARCONDES, J. A. P.; CAIRES, E. F.; **Aplicação de molibdênio e cobalto na semente para cultivo da soja. Bragantia**, Campinas, v. 64, n. 04, p. 687-694, 2005.

MESCHEDE, D.K.; BRACCINI, A.L.; BRACCINI, M.C.L.; SCAPIM, C.A.; SCHUAB, S.R.P.; Rendimento, teor de proteínas nas sementes e características agronômicas das plantas de soja em resposta à adubação foliar e ao tratamento de sementes com molibdênio e cobalto. **In: Acta Scientiarum. Agronomy**, Maringá-PR, v.26, no.2, p.139 – 145, 2004.

NAVARRO JUNIOR, H. M.; COSTA, J A. Contribuição relativa dos componentes do rendimento para produção de grãos em soja. **Pesquisa Agropecuária Brasileira**. 2002, v. 37, n. 3, pp. 269-274.

OLIVEIRA, E. F. de: Resposta do Milho ao Awaken e da Soja ao Acaplus aplicados via sementes. **Relatório de pesquisa, Coodetec** – Cooperativa Central de Pesquisa Agrícola, Cascavel, Pr., 2007.

PITTER, F.A.; PACHECO, L.P.; ALCÂNTARA NETO, F.; SANTOS, G.G.; Respostas de cultivares de soja à adubação nitrogenada tardia em solos de cerrado. **Revista Caatinga**, Mossoró, v. 25, n. 1, p. 67-72, jan.-mar., 2012.

RANDALL, G.W.; SCHULTE, E.E.; COREY, R.B.; Effect of soil and foliar-applied manganese on the micronutrient content and yield of soybean. **Agronomy Journal**, Madison, v.67, n.4, p.502-507. 1975.

REZENDE, P.M.; GRIS, C.F; CARVALHO, J.G.; GOMES, L.L.; BOTTINO, L.; Adubação foliar: I. Épocas de aplicação de fósforo na cultura da soja. **Ciênc. agrotec.[online].** 2005, vol.29, n.6, pp. 1105-1111. ISSN 1413-7054.

ROCHA, R.S.; SILVA, J.A.L; NEVES, J.A.; SEDIYAMA, T.; TEIXAIRA, R.C. Avaliação de variedades e linhagens de soja em condições de baixa latitude. **Revista Ciencia Agronomica**, v. 43, n. 1, p. 154 -162, 2011

SFREDO, G.J; OLIVEIRA, M.C.N.; Soja – Molibdênio e Cobalto; Londrina, PR; **EMBRAPA** (**Empresa Brasileira de Pesquisa Agropecuária**); 2010; 34 p.(Documentos, 322).

SOUZA, L.C.D; EUSTÁQUIO DE SÁ, M.; CARVALHO, M.A.C.; SIMIDU, H.M.; Produtividade de quatro cultivares de soja em função da aplicação de fertilizante mineral foliar a base de cálcio e boro **In: Revista de Biologia e Ciências da Terra.** Vol. 8; N° 2; p. 37 – 44; Selvíria – MS; 2008.

VASCONCELOS, ANA CAROLINA FEITOSA DE, Uso de bioestimulantes nas culturas de milho e de soja. **Piracicaba, 2006,** 111p.: Il.