# Comportamento de genótipos de milho sobre influência da densidade populacional

Susi Ane Cargnin Possebon<sup>1</sup>, Fellipe Braga Ribeiro da Silva<sup>1</sup>, Octavio Henrique Viana<sup>1</sup> Ana Paula Mourão M. Simonetti<sup>1</sup>, Regiane Slongo Fagundes<sup>2</sup>

susipossebon@hotmail.com, fellipe.brs@hotmail.com, octaviohv@fag.edu.br, anamourao@fag.edu.br, regiane@fag.edu.br

Resumo: Este trabalho teve como objetivo avaliar o comportamento de seis diferentes genótipos de milho (*Zea mays* L.) submetidos às populações de (60.000, 75.000, 90.000, 105.000 plantas por ha<sup>-1</sup>), em espaçamento de 0,45m entre linhas. Os híbridos simples avaliados receberam a denominação de G1, G2, G3, G4, G5 e G6. O experimento foi conduzido nas dependências da empresa Melhoramento Agropastoril Ltda, localizada na cidade de Cascavel-PR, no ano agrícola 2011/2012. Utilizou-se delineamento em blocos casualizados, com quatro repetições, totalizando vinte e quatro tratamentos. As variáveis diâmetro de colmo, peso de 1.000 grãos, acamamento e quebramento de planta e produtividade de grãos ha<sup>-1</sup>, foram submetidas a análise de variância e teste de significância (Tukey 5%). Para as análises estatísticas utilizou-se o software Sisvar. Conclui-se que em maior densidade de plantas o diâmetro de colmo é menor, o acamamento e quebramento de planta não apresentou diferença significativa em quaisquer populações. O genótipo 5, apresentou maior peso de mil grãos e maior produtividade kg ha<sup>-1</sup>, e demonstrou menor diâmetro de colmo em relação aos outros genótipos. Os melhores índices de produtividade estão na população de 84,45mil plantas ha<sup>-1</sup>.

**Palavras-chave:** Zea mays, população, arranjo espacial de plantas.

# Behavior of maize genotypes under the influence of population density

**Abstract:** This study aimed to evaluate the performance of six different genotypes of maize (Zea mays L.) submitted to the populations (60,000, 75,000, 90,000, 105,000 plants per ha <sup>1</sup>) at 0.45m spacing between hybrids simply evaluated lines. received the designation of G1, G2, G3, G4, G5 and G6. The experiment was conducted on premises Agropastoril Improvement Ltd., located in Cascavel-PR, in agricultural year 2011/2012. We used a randomized block design with four replications, totaling twenty four treatments. The variables stem diameter, weight of 1,000 grains, lodging and breaking of were subjected to analysis of variance and plant and seed yield ha-1 test (Tukey 5%). For the statistical analysis used the software Sisvar. It is concluded that the higher densityin stem diameter is smaller, lodging and breaking plant showed no significant difference in any population. The G5 showed higher grain weight and higher productivity kg ha<sup>-1</sup>, and had lower stem diameter compared to other genotypes. The best productivity rates are in the population of 84 450 plants ha<sup>-1</sup>.

**Key words:** *Zea mays*, Population, Spatial arrangement of plants.

<sup>&</sup>lt;sup>1</sup>Faculdade Assis Gurgacz – FAG, Curso de Agronomia, Avenida das Torres, n° 500, CEP 85.806-095, Bairro Santa Cruz, Cascavel – PR.

<sup>&</sup>lt;sup>2</sup> Universidade Tecnológica Federal do Paraná – UTFPR, Curso de Licenciatura em Matemática, Rua Cristo Rei, n° 19, CEP 85902-490, Toledo – PR.

## Introdução

O milho (*Zea mays* L.) é um dos cereais mais consumidos no mundo, muito utilizado na alimentação humana e animal, também como matéria-prima para indústrias. A cultura é altamente influenciada pelas variações ambientais e seu manejo, e cada cultivar poderá se expressar diferentemente em relação ás interações do genótipo com o ambiente (Facchi *et al.*, 2009).

Segundo Vieira Jr., (1999) apud Lima et al., (2011), é uma planta de metabolismo C4, que apresenta alta eficiência na utilização de luz e CO<sub>2</sub>. Porém, é necessário maximizar a atividade fotossintética através da manipulação da arquitetura e/ou arranjo espacial da plantas, pois a produção de fotoassimilados é influenciada diretamente pela taxa de fotossíntese líquida.

A distribuição das plantas na área pode se dar de várias formas, onde as variações no espaçamento entre linhas e a densidade populacional afetam diretamente a arquitetura da planta, a absorção de luz, água e nutrientes, já que o milho é uma cultura que responde a essas mudanças (Dallastra *et al.*,2009).

Para Argenta et al. (2001), justifica-se reavaliar as recomendações de espaçamento entre linhas e densidade de semeadura de milho em virtude das modificações introduzidas nos genótipos mais recentes, tais como: menor estatura de plantas e altura de inserção de espiga, esterilidade menor de plantas, menor duração do subperíodo, pendoamentoespigamento,(melhor arquitetura de plantas) angulação mais ereta de folhas e elevado potencial produtivo. Sabendo disso estudos vem sendo realizados para que se encontre o espaçamento e densidade condizentes para cada genótipo e assim recomendar aos produtores a melhor forma de manejo.

Entre as formas de manipulação do arranjo de plantas, a densidade populacional, é a que tem maior efeito no rendimento de grãos de milho, já que pequenas alterações na população implicam modificações relativamente grandes no rendimento final (Silva *et al.*, 2006).

O manejo da densidade de plantas é uma das práticas culturais mais importantes para determinar o rendimento de grãos no milho, pois o estande afeta a arquitetura das plantas, altera o crescimento e o desenvolvimento, e influência na produção e partição de fotoassimilados (Sangoi e Almeida, 1996).

A alta produtividade observada nos dias de hoje é possível através do melhoramento genético, devido a criação de genótipos mais tolerantes a algumas adversidades, criando cultivares superiores as cultivadas antigamente. De nada adianta essa evolução, se as

condições físicas, químicas e biológicas não estão sendo fornecidas corretamente, não permitindo que o material expresse seu potencial.

Híbridos de ciclo precoces diferentes dos tardios necessitam menor unidade de calor para seu florescimento, esta característica é herdada de cruzamentos realizados pelos melhoristas utilizando em seus programas, linhagens de clima tropical.

Estas necessidade como cita Sangoi *et al.*, 2001 terá reflexo na definição de práticas culturais a serem adotadas na lavoura, bem como na tolerância do milho a estresses bióticos e abióticos.

Já Sangoi *et al.*, 2000 afirma que para maximizar o rendimento de grãos destes genótipos necessita-se, teoricamente, de um maior número de indivíduos por área.

Assim, o objetivo deste trabalho é avaliar a fisiologia de seis genótipos de milho, utilizando-se de quatro diferentes densidades populacionais.

#### Material e Métodos

O experimento foi conduzido no município de Cascavel – PR na região oeste do Paraná, com latitude 24°57'27.70" S e 53°34'16.59"O de longitude a uma altitude 717 metros, no período de setembro de 2011 a início de março, nas dependências da empresa Melhoramento Agropastoril Ltda.

O solo caracteriza-se como LATOSSOLO VERMELHO distrófico argiloso com leves ondulações em seu relevo. O clima denominado subtropical, clima este propício a práticas culturais anuais.

As sementes antes do plantio foram tratadas com o inseticida Cropstar na dosagem de 1.700ml para cada 100kg de semente.

O preparo da área para a instalação do experimento iniciou com a dessecação, utilizando 1,5ml ha<sup>-1</sup> do herbicida Glifosato, e posteriormente riscada, utilizando uma semeadoura para incorporação do adubo.

O plantio realizou-se manualmente, com espaçamento de 0,45m entre linhas de plantio, com populações pré - definidas para o ensaio, sendo 60, 75, 90 e 105 mil plantas por ha<sup>-1</sup>. Cada tratamento contou com 5 (cinco) parcelas, de 5 (cinco) metros cada, destas somente as três linhas centrais foram avaliadas, e 4 (quatro) repetições, para que se obtenha mais confiabilidade.

Para adubação de base foi utilizada 413kg ha<sup>-1</sup> de NPK de formulação 08-20-20, e em cobertura foi aplicado 100kg ha<sup>-1</sup> de N, utilizando sulfato de amônia a 21%, totalizando 476.19 kg ha<sup>-1</sup>

Foram analisados 6 genótipos no experimento, que estão denominados como G1, G2, G3, G4, G5 e G6, onde teremos os genótipos 1, 2, 3, 4 de ciclo super precoce, e os genótipos 5 e 6 apresentam ciclo precoce. Todos os híbridos avaliados neste experimento e citados neste trabalho a pedidos da empresa responsável estão em códigos e são confidenciais. As variáveis analisadas, quebramento e acamamento de planta, diâmetro de colmo, peso de 1.000 grãos, e produtividade de grãos.

Para a coleta dos dados de diâmetro de colmo, utilizou-se o paquímetro, já para peso de mil grãos e produtividade, para cada tratamento foi realizado a pesagem dos grãos colidos, descontando a umidade. Os dados foram submetidos ao teste de variância, as médias qualitativas pelo teste de Tukey a 5% e as quantitativas foram comparadas por regressão linear e quadrática, utilizando-se programa análise estatísticas Sisvar

## Resultados e Discussão

Avaliando a Tabela 1, verificou-se que não ocorreu interação significativa entre genótipos e população, para quebramento e acamamento de planta, pelo teste de F ao nível de 5% significância. Avaliando os fatores separadamente, observou-se que também não ocorreu diferença significativa, pois possivelmente, os genótipos possuam algum nível de igualdade gênica e assim mesmo em diferentes populações apresentam o mesmo comportamento.

**Tabela 1** – Estatísticas F, coeficiente de variação (CV%) e media geral para planta quebrada (QB), planta acamada (AC), diâmetro de colmo, peso de mil grãos e produtividade

Segundo Carvalho (2007) estes resultados de baixos índices de planta acamada e quebrada podem ser explicados também por não ter ocorrido adversidades do ambiente tais como; granizo, chuvas e ventos fortes, gerando estrutura de planta sustentável.

|                    | QB                 | AC                 | Diâmetro de<br>colmo (cm) | Peso de mil<br>grãos (g) | Produtividade (kg/ha <sup>-1</sup> ) |
|--------------------|--------------------|--------------------|---------------------------|--------------------------|--------------------------------------|
| Genótipo           | $2,20^{ns}$        | 1,85 <sup>ns</sup> | 4,67**                    | 21,60**                  | 6,98**                               |
| População          | $2,48^{ns}$        | $1,34^{ns}$        | 23,27**                   | 42,12**                  | 3,97*                                |
| Genótipo*população | $0.97^{\text{ns}}$ | $0.92^{ns}$        | $1,16^{ns}$               | $0.91^{\text{ns}}$       | $1,39^{ns}$                          |
| CV (%)             | 153,12             | 251,28             | 6,49                      | 6,51                     | 5,76                                 |
| Média geral:       | 1,12               | 0,43               | 2,31                      | 288,36                   | 12873,16                             |

Sangoi *et al.* (2002) ainda afirmam que o que agrava o quebramento de colmos é a distância entre o ponto de inserção da espiga e o solo. Uma menor distancia contribui para o melhor equilíbrio da planta, minimizando a quebra de colmo.

<sup>\*\*</sup>significativo a 1% de probabilidade; \*significativo a 5% de probabilidade; <sup>ns</sup>não significativo a 5% de probabilidade.

Já o diâmetro de colmo, peso de 1000 grãos e produtividade, observou-se diferença significativa dentro do grupo de genótipos. Essa diferença mostrou, que há influência na densidade populacional, pois a medida que aumenta-se a população o diâmetro do colmo decresce, pois há competição por espaço, luz, água e nutrientes.

Para as variáveis diâmetro de colmo, peso de mil grãos, e produtividade foram encontrados coeficiente de variação 6,49%, 6,51% e 5,76% respectivamente, isso demonstra confiabilidade dos dados, já que Cargnelutti Filho *et al.* (2007) consideram que quanto menor for a estimativa do CV, maior será a precisão do experimento e vice-versa, e quanto maior a precisão (maior qualidade) experimental, menores diferenças entre estimativas de médias serão significativas.

**Tabela 2** – Diâmetro de colmo, peso de mil sementes e produtividade em função de diferentes genótipos

|               | Diâmetro de colmo (cm) | Peso de mil sementes<br>(g) | Produtividade<br>(kg/ha <sup>-1</sup> ) |
|---------------|------------------------|-----------------------------|-----------------------------------------|
| G1            | 2,31 ab                | 257,62 c                    | 12461,86 bc                             |
| G2            | 2,41 a                 | 281,4 b                     | 12897,11 abc                            |
| G3            | 2,30 ab                | 301,64 ba                   | 12587,44 bc                             |
| G4            | 2,40 a                 | 283,15 b                    | 13232,44 ba                             |
| <b>G5</b>     | 2,19 b                 | 322,47 a                    | 13650,57 a                              |
| <b>G6</b>     | 2,27 ab                | 283,82 b                    | 12409,51 c                              |
| CV (%)        | 7,34                   | 7,52                        | 5,96                                    |
| DMS           | 0,17                   | 22,46                       | 793,74                                  |
| Estatística F | 3,65                   | 16,18                       | 6,53                                    |

Médias seguidas de mesma letra na coluna dentro de cada parâmetro analisado não diferem entre si, pelo teste de tukey a 5% de probabilidade.

Na Tabela 2 observa-se que com relação ao diâmetro de colmo os genótipos G2 e G4, não diferiram entre si estatisticamente, mas G2 obteve o maior diâmetro (2,41cm), já o genótipo 5 foi o que apresentou menor diâmetro medindo em média 2,19cm. Uma das característica que diferem os genótipos é o ciclo, onde G2 possui o ciclo super precoce e G5 é um hibrido de ciclo precoce.

Analisando o fato de que os dois genótipos que demonstraram maior diâmetro G2 e G4, apresentam o ciclo super precoce, pode-se supor que os mesmos por possuírem esta característica, e necessidades diferentes, daqueles genótipos de ciclo precoce, têm seu crescimento mais rápido, consequentemente o aproveitamento das variáveis ambientais é melhor utilizado para a desenvolvimento da planta.

Segundo Sangoi *et al.*(2002) o menor diâmetro do colmo pode favorecer o aumento da porcentagem de plantas acamadas e quebradas; porém afirma ainda que a arquitetura de plantas dos híbridos mais modernos contribui para reduzir a sua suscetibilidade ao acamamento e quebra de colmos.

Em relação a variável analisada de peso de mil sementes destacaram-se os genótipos G5 e G3, os quais não obtiveram diferença significativa entre si. Observou-se então que novamente o genótipo 5 obteve a maior peso de mil grãos, assim afirmamos que por apresentar um ciclo precoce, o retorno em produtividade é satisfatório.

Em produtividade não obtiveram diferença significativa entre G5, G4 e G2, mas novamente observou-se que G5 destacou-se com 13650,57kg por ha<sup>-1</sup>, enquanto G1, G2, G3 e G6, não apresentaram diferença significativa, mas G6 apresentou o menor valor por hectare 12409,51kg. A alta produtividade desses híbridos, segundo Almeida *et al.* (2000) está relacionada ao contínuo desenvolvimento de técnicas que propiciam a maximização do seu potencial de exploração do ambiente.

Em relação a densidade populacional, observou-se a diferença significativa nas variáveis produtividade, diâmetro de colmo e peso de mil grãos, como será demostrados nos figura a seguir:

O rendimento de grãos é significativamente influenciado pela densidade de plantas, como representado na Figura 1. Este mostra que a produção média total ótima encontrada foi em torno de 84,45mil plantas ha<sup>-1</sup>. Em experimentos realizados por Resende, (2003) foi observado que as densidades de 70 e 90 mil plantas ha<sup>-1</sup> foram mais promissoras para produtividade de grãos em relação a menores populações. Isso é demonstrado no gráfico 1, onde formou-se uma curva de produtividade, vemos que a partir do PMT (Ponto Máxima Eficiência Técnica) a média de produtividade é decrescente, sendo assim quando a densidade é maior a sua produtividade diminui.

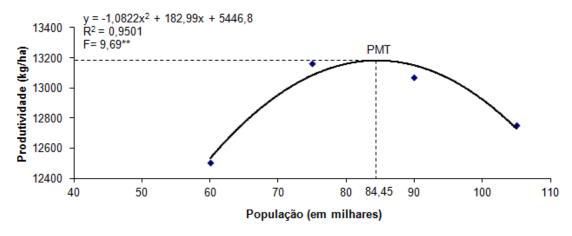
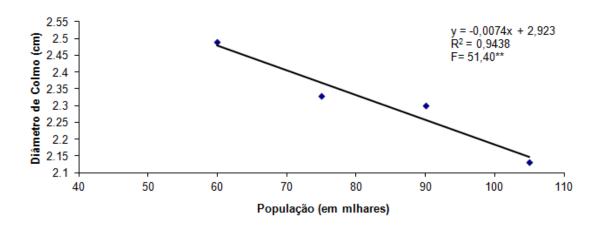



Figura 1 – Ponto de máxima eficiência técnica.

Segundo Von Pinho *et al.*, (2008) o aumento da densidade populacional na cultura do milho pode provocar maior competição entre plantas por nutrientes, água, luz e CO<sub>2</sub>, sendo a disponibilidade dos dois primeiros o que oferece maior limitações para o emprego de grandes populações. Entretanto, os mesmos autores afirmam que a maior população também pode contribuir para a correta exploração do ambiente e do genótipo com consequências na maior produtividade de grãos.

Porém Sangoi *et al.*(2000) afirmam que o adensamento excessivo incrementa a competição intra-específica por fotoassimilados, principalmente no estádio de florescimento da cultura. Tal fato estimula a dominância apical, aumentando a esterilidade feminina e limitando a produção de grãos por área.


Amaral Filho *et al.*(2005) afirmam que a produtividade tende a se elevar com o aumento da população, até atingir determinado número de plantas por área, que é considerada como população ótima.

Concordando com Argenta *et al.*(2001) que o rendimento de grãos de milho aumenta com o incremento na densidade de planta até atingir um nível ótimo, que é determinado pelo genótipo e pelas condições do ambiente e diminui com posteriores aumentos na densidade.

Segundo Almeida *et al.*(2001) o uso de cultivares de menor porte pode ser acompanhado de um incremento na densidade de plantas até valores compreendidos entre 65 e 80.000 plantas por hectare, desde que se obtenha condições edafoclimáticas favoráveis, não ocorra déficit hídrico prolongado e o cultivar seja resistente ao acamamento.

No Figura 2 avaliou-se o diâmetro de colmo conforme as diferentes populações e verificou-se que com o aumento da população obtive-se um decréscimo, em cm, do diâmetro

de colmo. Isso se dá pela alta competição de espaço, nutrientes, água e luz, modificando assim sua arquitetura.



**Figura 2 -** Diâmetro de colmo em relação a densidade populacional.

O mesmo resultado foi encontrado por Figueiredo, *et al.*(2008) onde o número de plantas por hectare, influenciou de maneira significativa o diâmetro do colmo, sendo que as menores populações apresentaram os maiores diâmetros de colmo.

Schek *et al.*(2009) também constataram que o diâmetro do colmo aumentou com a diminuição do espaçamento (efeito da distribuição de plantas).

Essa diminuição no diâmetro de colmo se justifica segundo Sangoi, *et al.*(2002) porque a maior competição intra-específica por luz, o aumento da dominância apical e o estiolamento das plantas favorecem a redução no diâmetro do colmo.

Assim, resultados encontrados neste trabalho corroboram com o encontrado por Costa *et al.*,(2005) no qual, o plantio adensado indica que a formação do caule mais frágil, devido à redução do diâmetro.

Assim como no resultado obtido no figura 2, observamos também na figura 3, um decréscimo no peso de mil sementes conforme o aumento da população. A medida que se aumenta a população, as sementes apresentam um menor peso.

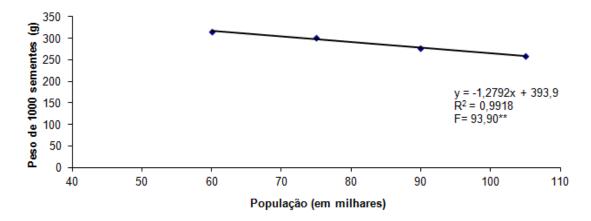



Figura 3 - Peso de 1000 sementes em relação a população.

Possivelmente está redução no peso de mil sementes se deve a competição por nutrientes, água, luz e espaço, nas quais a cultura do milho é dependente.

O mesmo resultado encontrado por Kunz (2005), confirmou que o peso de mil sementes é influenciada pela interação entre híbridos e população de plantas, sendo que houve redução desse componente linear com o aumento da população.

O que também confirma o trabalho realizado por Carvalho (2007) onde com o aumento da população, todos os híbridos trabalhados por eles tiveram redução do peso de mil sementes.

#### Conclusões

Através deste trabalho, verificou-se que não houve diferença significativa nas variáveis acamamento e quebramento de planta em relação genótipos e população.

O genótipo 5 de ciclo precoce, destacou-se por apresentar maior produtividade em kg ha<sup>-1</sup>, e peso de mil grãos, mesmo demonstrando um menor diâmetro de colmo.

Por fim, para o fator população, verificou-se que os valores mais expressivos foram encontrados na população de 84,45mil plantas por hectare, apresentando uma produtividade de 13,200kg ha<sup>-1</sup>.

# Referências

ALMEIDA, M.L.; JUNIOR, A.M.; SANGOI, L.; ENDER, M.; GUIDOLIN, A.F. Incremento na densidade de Plantas: uma alternativa para aumentar o rendimento de grãos de milho em regiões de curta estação estival de crescimento. **Ciência Rural**, Santa Maria, v. 30, n. 1. p. 23-29, 2000.

AMARAL FILHO, J.P.R.; FILHO D.F.; FARINELII, R.; BARBOSA, J.C. Espaçamento, densidade populacional e adubação nitrogenada na cultura do milho. **Revista Brasileira Ciência Solo**, 29:467-473, 2005.

- ARGENTA G.; SILVA, P.R.F. da; SANGOI, L. Arranjo de plantas em milho: análise do estado-da-arte. **Ciência rural**, v. 31, n. 6, 2001.
- CARGNELUTTI FILHO, A.; STORCK, L. Estatísticas de avaliação da precisão experimental em ensaios de cultivares de milho. **Pesq. Agropec. Bras**., Brasília, v.42, n.1, p.17-24, jan. 2007.
- CARVALHO, I.Q. **Espaçamento entre fileiras e população de milho**. 2007, 118p. Dissertação de mestrado, Universidade Estadual de Ponta grossa, 2007.
- COSTA, A.S.V.; GALVÃO, E.R.; SILVA, M.B.; PREZOTTI, L.; RIBEIRO, J.M.O. Densidade populacionais de milho na região do Vale do Rio Doce. **Revista Ceres**. Vol, LII, N° 299, 2005.
- DALLASTRA, A.; SCHERK, R.G; FAGUNDES, R.S; PEREIRA, F.L.R. Fisiologia do milho sobre influencia do espaçamento e da densidade populacional. **Cultivando o Saber**, Cascavel, v.2, n.2, p.128-138, 2009.
- FACCHI, L.; FAGUNDES, R.S.; PEREIRA, F.L.R.. Comportamento de genótipo de milho em diferentes ambientes da região sul do Brasil. **Cultivando o saber**, Cascavel, v.2, n.1, p. 99-110, 2009.
- FIGUEIREDO, E.; ASCENCIO, F.; SAVIO, G. M.; PINOTTI, E. B. Características agronômicas de três cultivares de milho sob quatro populações de plantas. **Revista científica eletônica de agronomia,** ano VII Número 13 Junho de 2008.
- LIMA, C.F.; ARNHOLD, E.; ARAUJO, B.L.; OLIVEIRA. G.H.F.; JUNIOR. E.A.O. Avaliação de híbridos de milho, sob três densidades populacionais em fronteira agrícola no Maranhão. **Comunicata Scientiae**, 3(1): 30-34, 2011.
- KUNZ, R.P. Influência do arranjo de plantas e da população em características agronômicas e produtividade do milho. 2005, f.115, Universidade de Ponta Grossa, Ponta Grossa, 2005.
- RESENDE, S.G.; PINHO, R.G.V.; VASCONCELOS, R.D. Influência do espaçamento entre linhas e da densidade de plantio no desempenho de cultivares de milho. **Revista Brasileira de Milho e Sorgo**, v.2, p.34-42,2003.
- SANGOI, L.; ALMEIDA, M.L. Aumento da densidade de plantas de milho para regiões de curta estação estival de crescimento. **Pesquisa Agropecuária Gaúcha**, Porto Alegre, v. 2, n. 2, p. 179-183, 1996.
- SANGOI, L.; ALMEIDA, M.L.; DA SILVA, P.R.F.; ARGENTA, G. Bases morfofisiológicas para maior tolerância dos híbridos Modernos de milho a altas densidades de plantas. **Bragantia**, Campinas, v. 61, n. 2, 101-110, 2002.

SANGOI, L.; ALMEIDA, M. L.; LECH, V. A.; GRACIETTI, L. C.; RAMPAZZO, C. Desempenho de híbridos de milho com ciclos contrastantes em função da desfolha e da população de plantas. **Scientia Agricola**, v.58, n.2, p.271-276, abril./jun.2001.

- SANGOI, L.; ENDER, M.; GUIDOLIN, A.F.; BOGO, A.; KOTHE,D.M. Incidência e severidade de doenças de quatro híbridosde milho cultivados com diferentes densidades de plantas. Ciência Rural, v.30, p.17-21, 2000.
- SCHEK, G.R.; DALLASTRA, A.; FAGUNDES, R.S.; PEREIRA, F.L.R. Fisiologia do milho sobre influência do espaçamento e da densidade populacional. **Cultivando o Saber.** Cascavel, v. 1, n. 1, p.87-94, 2008.
- SILVA, A.J.; WENTZ, R.; BOFF, J.T.; NORONHA, U.; BATTISTI, G.K.; CAMACHO, D.G.; FERNANDES, S.B.V.; BERTO, J.; SILVA, J. A. G. Arranjo populacional em híbridos de milho na expressão de componentes diretos de produção. XVII CIC, XI ENPOS I Amostra científica.

  Anais...

  Disponível

  em http://www.ufpel.edu.br/cic/2009/cd/pdf/CA/CA\_00929.pdf, acesso 07 de dezembro 2011.
- VON PINHO, R.G.; GROSS, M.R.; STEOLA, A.G.; MENDES, M.C. Adubação nitrogenada, densidade e espaçamento de híbridos de milho em sistema de plantio direto na região sudoeste do Tocantins. **Bragantia**, Campinas, v.67, n.3, p.733-739, 2008.